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Abstract 

The phase problem, when single-wavelength anomalous 
scattering (SAS) diffraction data are available, is 
formulated as a problem in global optimization. 
Although the objective function has a myriad of local 
maxima, its global maxima, never more than two, are 
readily accessible and easily identified by virtue of their 
isolation. The ability to determine the global maxima of 
the objective function represents the latest and most 
successful attempt to go directly from the known 
probabilistic estimates of the three-phase structure 
invariants to the values of the individual phases. The 
relationship between the maxima of the objective 
function and the solutions of the newly formulated 
system of SAS tangent equations plays a key role in this 
development. 

1. Introduction 

The techniques of modem probability theory lead to 
the joint probability distributions of arbitrary collec- 
tions of diffraction intensities and their correspond- 
ing phases. These distributions constitute the 
foundation on which direct methods are based. 
They have provided the unifying thread from the 
beginning, ca 1950, until the present time. They 
have led, in particular, to the (first) minimal 
principle (Hauptman, 1991; Hauptman, Velmurugan 
& Han, 1991; DeTitta, Weeks, Thuman, Miller & 
Hauptman, 1994) which has found expression in the 
Shake-and-Bake formalism (Weeks, DeTitta, Haupt- 
man, Thuman & Miller, 1994; Miller, Gallo, 
Khalak & Weeks, 1994), a computer program that 
provides a completely automatic solution to the 
phase problem, ab inin'o, provided that diffraction 
data to at least 1.2,~ are available. Our experience 
shows that structures having as many as 600 
independent non-H atoms are routinely accessible 
to this approach and suggests that its ultimate 
potential is greater still. 

It should perhaps be pointed out that the minimal 
principle, the theoretical basis of Shake-and-Bake, 
replaces the phase problem by one of constrained 

global minimization, in sharp contrast to an earlier 
formulation by Debaerdemaeker & Woolfson [1983, 
equation (16)], in which the (unconstrained) global 
minimum was sought. The distinction is crucial, not 
only on the theoretical level but in the applications 
as well: Not only does the constrained global 
minimum yield accurate values of the individual 
phases ab initio but this formulation suggests how 
the minimum is to be reached (via the Shake-and- 
Bake program) and how to identify it. The failure to 
impose the constraints, as is done in the earlier 
work, greatly limits the usefulness of that approach, 
especially since it is not at all clear how to reach or 
identify the unconstrained global minimum. 

One naturally anticipates that, with the availability 
of single-wavelength anomalous-scattering data, the 
ability to determine phases ab initio will be 
strengthened. This expectation is in fact realized 
here. Specifically, a SAS maximal principle is 
formulated which, even though unconstrained, never- 
theless strengthens the earlier minimal principle by 
incorporating SAS estimates of the cosines and sines 
of the three-phase structure invariants. The initial 
applications show that, in this way, the phase 
problem is solvable ab initio, even for macromol- 
ecules, when SAS diffraction data alone are avail- 
able at a resolution of about 2.5 A. 

This work represents the latest attempt to go 
directly from known estimates of the three-phase 
structure invariants to the values of the individual 
phases (cf., for example, Han, DeTitta & Haupt- 
man, 1991; Hauptman & Han, 1993). However, 
instead of attempting to solve by least squares a 
redundant system of linear equations, as was done in 
the earlier work, the formulation presented here 
transforms the problem into one of global optimiza- 
tion, a problem with a surprisingly easy solution. 
Furthermore, as shown by the initial applications, 
briefly described here and in further detail in a 
forthcoming publication, the results derived here 
represent a substantial improvement over the earlier 
work. 

Although other phasing methods employing SAS 
data have been devised (e.g. Fan, Hao, Gu, Qian & 
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Zheng, 1990), with the exception of the two 
references cited in the previous paragraph, none of 
these exploits the information contained in the SAS 
estimates of the three-phase structure invariants. 
Thus, this work marks a radical departure from 
the earlier approaches. 

Once again, the probabilistic theory of the (three- 
phase) structure invariants, initiated in the SAS case 
in 1982 (Hauptman), plays the central role. It 
should perhaps be stressed at the outset that, 
owing now to the breakdown of Friedel's law and 
contrary to all earlier belief, unique values for all 
the structure invariants in the whole interval from 0 
to 2rr are determined since the enantiomorph is fixed 
by the observed magnitudes IEI. It is believed that 
the ability to fix the enantiomorph ab initio accounts 
for the unexpected result described here (§9). 

The approach adopted here is similar to that used 
in the derivation of the minimal principle but is 
suitably modified in order to take into account the 
availability of the SAS diffraction data. Not only is 
one led in this way to the SAS maximal principle 
but an important connection with the SAS tangent 
formula, the analogue of the traditional tangent 
formula, is established. Two remarkable properties 
of the SAS maximal function emerge: (a) the easy 
accessibility and ready identification of its global 
maxima and (b) the isolated character of these 
maxima. 

3. The expected values of cos qTnK and sin q~HK 

Refer to Appendix A to conclude that the expected 
values of cos 9HK and sin ~VHK are given by 

E(COS ~0HK ) --" [II(AHK)/Io(AHK)]COSWHK (5) 

and 

e(sin 9riI0 = [Ii(AniO/lo(AriK)]sinwnx, (6) 

respectively. 

4. The SAS minimal principle 

In view of (5) and (6), one defines the SAS minimal 
function m(~v), a function of the phases ~, by means 
of 

- [Ii(Alm)/Io(AnK)]cosw.K} 2 + {sin ~onK 

sin conK} 2) ],  (7) [II (AnK) /Io(AnK)] 

where ~0nK is given by (1), and conjectures that the 
global minimum of m(~0) yields the true values of 
the phases for some choice of origin (the SAS 
minimal principle). Recall that, owing to the break- 
down of Friedel's law, the enantiomorph is fixed by 
the observed magnitudes IEI (Hauptman, 1982). 

2. The probabilistic background 

With the assumption that SAS diffraction data are 
available, the conditional probability distribution 
P(q)) of the triplet 

9HK --" 9H "3t- ~K "31- ~ - H - K '  (1) 

given the six magnitudes 

IE.I, IE_HI, IEKI, IE-KI, IEn+KI, IE-H-KI, (2) 

is known to be (Hauptman, 1982) 

P(4 , )  = [27rI0(AHK)] -1 exp{AHK COS(~ -- WHK)}, (3) 

in which I 0 is the modified Bessel function and AHK 
and WHK are expressed in terms of the six 
magnitudes (2) and the (presumed known) com- 
plex-valued atomic scattering factors f. Hence, 
AHK (> 0) and WHK are here assumed to be known 
for every pair (H,K).  Note that, owing to the 
breakdown of Friedel's law, the six magnitudes (2) 
are, in general, distinct. 

In view of (3), the most probable value of ~OHK is 
WHK, and the larger the value of AsK the better is 
this estimate of ~0nx: 

~OHK = ~H 31- qgK -~- ~ - H - K  ~ '  O)HK" (4) 

5. The SAS maximal principle 

In view of Appendix B, one replaces the SAS 
minimal function m(~v) by the much simpler SAS 
maximal function M(~v): 

M(qg) = I 1 /  ~ AHK) H.K 

X COS(~O H -3 I- (/9 K + ~0_H_ K --  (.OHK), (8)  

and infers that the global maximum of M(9) yields 
the true values of the phases for some choice of 
origin (the SAS maximal principle). There remains 
the problem of finding the global maximum of 
M(9), a problem presumed to be difficult by virtue 
of the existence of a myriad of local maxima of 
M(~p). The solution, however, turns out to be 
unexpectedly straightforward. How the problem is 
solved via the system of SAS tangent equations is 
described in the next section. 

It is instructive to compare the SAS maximal 
principle, as formulated here, with equation (18) of 
Debaerdemaeker & Woolfson (1983), of which our 
M(9) may be regarded as the SAS counterpart. 
Whereas the global maximum of M(~o) solves the 
phase problem, the global maximum of Debaerde- 
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maeker & Woolfson's equation (18) yields the value 
zero for every phase, clearly a non-solution. 

6. The system of SAS tangent equations 

Refer to Appendix C to deduce the system of SAS 
tangent equations. 

For each fixed value of the reciprocal-lattice vector H, 

~OH = ~ E AHK[II (AHK)/Io(AHK)] tan 
t. K 

× sin(a)HK - -  ~ K  - -  ~0-H-K) / 
J 

× ( ~-~AHK[II(AHK)/Io(AHK)]K )}-1 
X C O S ( 0 ) H K  - -  ~0 K - -  9 - H - K  , (9) 

where 

sin ~ H  ---- ( l / C )  EAHK[[I(AHK)/Io(AHK)] 
K 

× sin(WHK - -  ~0 K - ~ 0 _ H _ K )  (10) 

costp a = ( l /C)  EAHK[II(AaK)/Io(AHK)] 
K 

x COS(a~K - 9K - 9-n-x)  (11) 

and 

C -- ( ( ~-~AHK[II(AHK)/I°(AHK)]K 

x sin(wax - ~)K - -  ~-H-K)/2 
J 

+ ( ~'~AHK[II(AHK)/Io(AHK)IK 

)< COS(O')HK - -  ~ K  - -  ~ - H - K )  > 0 .  (12) 

Thus, (9) determines two possible values for ~0 H, 
differing by zr, while (10) to (12) resolve the 
ambiguity. Hence, (9)-(12) determine 9H uniquely 
when all other phases are assumed to be known. 

Although (9) differs from the standard tangent 
formula only in the presence of the non-zero 
estimates ognK of the three-phase structure invariants 
9nx, as well as the completely different set of 
weights Aim (the presence of the ratio of Bessel 
functions 11/10 being of negligible significance), 
these differences are of fundamental importance in 
the applications. As described in §14, the present 
formulation solves the phase problem for macro- 
molecules in the SAS case with diffraction data to 
2.5A resolution; not surprisingly, the same claim 
cannot be made for the standard tangent formula 

when used in the same way. Nevertheless, it should 
be stressed that use of the standard tangent formula 
in the way described here (§8) is a very effective 
technique for phase determination for smaller 
structures when atomic resolution data are available 
(Yao, 1981). Our method may be regarded as the 
SAS counterpart of this earlier work. 

7. The maximal property of the system of SAS 
tangent equations 

Refer to Appendix D for the proof of the following. 
Fundamental maximal property. Fix H. Assume 

that the values of all phases other than 9H are 
specified arbitrarily. Then the maximal function 
M(9) becomes a function, M(~oa/~o), of the single 
phase 9H. As a function of 9tl, M(gH/~O) has a 
unique maximum in the whole interval (0, 2rr) and 
the value of ~ i  that maximizes M(gH/9) is given by 
the SAS tangent equations (9) to (12). In short, 
every plane section of M(9) parallel to a coordinate 
plane has a unique maximum in the interval (0, 2zr) 
given by the SAS tangent equations (9) to (12). 

It has long been known that the standard tangent 
formula may be derived by maximization of 
~--~Arlx cosgtm, essentially the result described here 
when all the War :s are equal to zero. The 
significance of our generalization of this earlier 
work is that the maximal property of the system of 
SAS tangent equations leads to a practical method of 
phase determination whereas the earlier result does 
not (§§6-9). 

8. How to climb a mountain using the SAS tangent 
trail 

Specify arbitrarily initial values for all the phases ~o. 
Fix H. Calculate a new value for the phase 9n by 
means of the SAS tangent equations (9) to (12), in 
this way, in view of §7, increasing the initial value 
of the maximal function M(~p). Fix H ' # H .  
Calculate a new value for 9w, again using (9)- 
(12), the new value for 9ri, and initial values for 
the remaining phases, thus increasing still further the 
value of M(~o). Continue in this way to obtain new 
values for all the phases, thus completing the first 
iteration and, in the process, continuously increasing 
the value of M(~o). Complete as many iterations as 
necessary in order to secure convergence. Conver- 
gence is assured since the iterative process yields a 
monotonically increasing sequence of numbers, the 
values of M(9), bounded above by unity. Evidently 
also, the process leads to a local maximum of M(9), 
the top of the mountain, and a corresponding set of 
values for all the phases 9. 
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The applications show that only rarely does 
convergence require more than 30 iterations, and 
usually fewer than 20 suffice. 

9. The tallest peak, totally isolated, smooth and 
ripple free, rests on the broadest base 

The process described in §8 always leads to a local 
maximum of M(~o), the number of which is legion. It is 
natural therefore to ask: Will the process ever lead to 
the global maximum? Preliminary calculations, based 
on three structures ranging in complexity from 1000 to 
4000 independent atoms and in resolution from 3.0 to 
2.5A, show unequivocally that the answer is yes, 
frequently! Quite unexpectedly, the success rate is high, 
usually in the range of 10 to 15%, so that 1000 trials, 
which is readily computable, yield, as it turns out, at 
most two distinct global maxima having, however, 
almost identical values, at least 100 times in typical 
cases. 

A remarkable additional feature of the SAS maximal 
function is the total isolation of its global maxima. 
Thus, while the values of the local maxima are 
continuously distributed in a rather narrow range, the 
values of the global maxima exceed these by far. This 
remarkable property of M(fp) not only makes it easy to 
identify its global maxima and the associated sets of 
values for the phases but no doubt accounts as well (in 
some way not understood at present) for the unexpect- 
edly large circle of convergence surrounding each 
global maximum. 

If the anomalous signal is weak (as is usually the 
case), the breakdown of Friedel's law is not severe and, 
in implementing §§5-9, it may be assumed, to a 
sufficiently good approximation, that Friedel's law 
holds. If, on the other hand, the anomalous signal is 
strong, a more general approach may be called for, as 
described next. 

10. The generalized SAS maximal principle 

The work described here has been based on the triplet 
9nK [(1)] and its conditional probability distribution 
P($)  [(3)]. One may instead base a completely 
analogous theory on the triplet ~3HK defined by means of 

~I4K = ~PH + ~K --  ~0H+K' (13) 

which, because of the breakdown of Friedel's law, is 
not equal to 9HK, and its conditional probability 
distribution (Hauptman, 1982) 

p(q0) - -  [1/2:r r I0( ,4HK)]exp{AHK COS(43 --  (~HK)}' (14) 

where, once again, the parameters "4nK and &HK are 
expressible in terms of the six magnitudes (2) and the 
complex-valued atomic scattering factors f. The details 
are so similar to those already described that they are 
not explicitly given here. Only the final combined 

results are briefly summarized. Thus, the generalized 
SAS maximal function M(~o) is defined by 

r ] l  M(9) = ~ AHK + ~ AHK 
/H,K H,K 

× ~ ~ AIIK[II(AHK)/Io(AltK)] I. H,K 

X COS(q9 H @ 9K + q ) - a - K  --  O')HK) 

+ hHK[II( HK)/Io(A, )] 
H,K 

X COS((/) H -1- ~K --  ~0H+K --  (~)HK)} (15) 

and has the property that its global maximum yields the 
true values of all the phases. Again, the generalized 
SAS tangent equations become 

tan gH = { ~K AHK[II(AHK)/Io(AHK)] 

× sin(COHK - -  @K - -  @ - H - K )  

+ EAHK[II(AHK)/Io(~4HK)] 
K 

x sin(CSHK -- ~OK + qgH+K) / 

X ~ ~ AHK[Ix(AHK)/Io(AnK)] 
l, K 

X COS(0)HK - -  ~0 K --  9 - H - K )  

+ Ef HKtlI(f4HI,)/Io(AHK)] 
K )}-1 

x COS(CSHK -- ~0g + ~0H+K , (16) 

where 

sin q9 H = (1/C') { ~K AHK[I1 ( A H K ) / I 0 ( A H K ) ]  

× sin(COHK --  ~gK - -  9 - H - K )  

+ ~-~AHK[I~(AHK)/Io(AHK)] 
K 

x sin(&Hr -- ~0K + ~0H+K)} (17) 

COSgH = (1 /C ' ) (  Y'~AHK[II(AHK)/Io(AHK)]K 

X COS(OaK --  q9 K --  9 - H - K )  

+ EAHK[II (AHK)/ Io(AHK)]  
K 

X COS((~HK - -  ~0 K 71- qgH+K) } (18) 
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and C' is a positive coefficient chosen in such a way as 
to ensure that the identity, (33), holds. Finally, ~7-9  
again hold, without change. 

It is anticipated that the more general formulation 
described here will usually not be needed unless the 
anomalous signal is so strong that the breakdown of 
Friedel's law is severe and necessitates the use of this 
somewhat more accurate formalism. 

The SAS maximal principle may thus be re- 
interpreted as yielding the solution of the redundant 
system of linear congruences (22). Somewhat 
unexpectedly, in those cases where the SAS maximal 
function has two global maxima, the system of 
redundant linear congruences (22) has two solutions, 
only one of which is the proper solution of the 
phase problem. 

11. The global maximum of M(~p) 

If the true values 9r of the phases 9 are substituted into 
the SAS maximal function, one obtains the value of its 
(presumed) global maximum, M(gr), which, in view of 
Appendix E, is simply 

M(gr) = - \ ( 1 / / ~  AHK ~ AnK[I~I (AnK) /12(AnK)] < 1. 
H,K / H,K 

(19) 

If, on the other hand, one chooses the values of the 
phases at random, then, since the average value of the 
cosine in (8) is zero, one obtains M(gR): 

M(gOR) = 0. (20) 

Hence, 

0 = M(gR) < M(gor) < 1. (21) 

12. The SAS correspondence principle 

It is clear from §§7 and 8 and Appendix D that there 
corresponds to every solution of the system of SAS 
tangent equations (9)-(12) a local maximum of M(9), 
and conversely (the SAS correspondence principle). 

13. The linear congruence connection 

The problem of going from the estimated values 
oh~ of the three-phase structure invariants ~0HK [(4)] 
to the values of the individual phases 9 may be 
formulated as the problem of solving the redundant 
system of linear congruences 

(/91-1 + ~0K 21- q g - a - K  :-- O)HK (modulo 2z 0 (22) 

each with weight AI~. This was the point of view 
adopted in the earlier work of Han et al. (1991) and 
Hauptman & Han (1993) in which the system (22) 
was transformed into a redundant system of linear 
equations 

¢Pn + ~OK + ~O-n-l,: = aMK + 2:rnuK (23) 

and the attempt was made, with limited success, to 
determine the integers nnK in such a way as to 
make the system (23) self-consistent. The resulting 
redundant system of linear equations (23) was then 
solved by least squares. 

14. The initial application 

The method described here was applied, with 
experimentally determined diffraction data, to the 
ab initio solution of the phase problem for the 
platinum derivative of the previously known macro- 
momycin structure (Van Roey & Beerman, 1989) 
consisting of approximately 750 protein atoms and 
150 solvent molecules and crystallizing in the space 
group P2 a. With diffraction data to 2.5A resolution, 
150000 three-phase structure invariants with largest 
A values were estimated. These involved 2710 
phases whose values were to be determined. 

100 solutions of the system of SAS tangent 
equations (9)-(12) were obtained using initial values 
of the phases chosen at random. Each of these trials 
converged to solution in five to eight cycles. Of the 
100 trials, 17 yielded the same global maximum of 
the SAS maximal function M(9) [(8)], which, in this 
case, turned out to be unique. Since the macro- 
momycin structure had been previously determined, 
it was possible to calculate the average initial phase 
error using the known phases from the refined 
structure. This turned out to be 49 ° for all 2710 
phases. It should be stressed that this solution of the 
phase problem for macromomycin was strictly ab 
initio in the sense that the only information needed 
was the observed SAS diffraction intensities at 2.5 
resolution; and the resulting map was interpretable. 

With error-free diffraction intensities, the same 
calculation, again using SAS estimates for 150000 
three-phase structure invariants, yielded the values of 
2120 phases with an initial average phase error of 
30 °. Details will be described in a forthcoming 
publication. 

Research supported by National Institutes of Health 
Program Project Grant no. GM46733. 

APPENDIX A 
The expected values of cos ~nK and sin (PrII~ 

From the distribution (3), 

2zr 

e(cos ~onK ) = [2nlo(AnK)] -1 f (COS q~) 
0 

× exp{Arm cos(@ - O)HK)} d@ (24) 
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27r 

= [27Z'I0(AHK)] -1 f ( C O S ( ~  - -  O)HK ) 
0 

X COS 0)HK --  sin(q0 - 0)HK ) s i n  O,)HK } 

x exp{Am~ cos(~/' - O)HK)} d e  (25) 
2rr 

- -  [2:rrI0(AHK)] -1 f (COS O)HK COS (~ 
0 

- sin WHK sin 4)) exp(AHK COS q)) d(/' (26) 

from which (5) follows. 
The derivation of (6) is similar. 

APPENDIX B 
The SAS maximal function 

The SAS minimal function m(9) [(7)] may be re-written 

m(9) = 1  + ( 1 / ~  AHK ~ ~ AHK[I~(AHK)/I~(AHK)] 
\ / H,K ~/ H,K 

--(2/~'~AHK) H,K 

X COS((PH K - -  (.0HK), (27) 
only the last term of which depends on the phases ~o. 
Reversing the sign of the last term and dividing by 2, 
one then defines the SAS maximal function M(9) by 
means of 

M(qg) = ( 1 /  ~'] AHK) H.K 

× COS((/gHK - -  O)HK ) (28) 
and concludes that the maxima of M(~o) coincide with 
the minima of m(9), and conversely. 

{ }-' 
COSq9 H ' ~  EAHK[II(AHK)/Io(AHK)] 

K 

× ~-']AHK[II(AHK)/Io(AHK)] K 
X COS(0.)HK --  9 K  - -  ~ - H - K ) "  (32) 

Least-squares adjustment of sin ~H and cos ~H as given 
by (31) and (32), constrained to satisfy 

sin2 ~H + cOS2 qgH = 1, (33) 

leads directly to (10)-(12) and thence to the SAS tangent 
equations (9)-(12). 

APPENDIX D 
The maximal property of the system of SAS tangent 

equations 

Refer to §7 for the definition of M(gH/q~ ), a function of 
the single phase 9a whose maximum we seek. There- 
fore, from (8), we find, for fixed H, 

dM('H/(~)/d~H :- (1/~K AHK ) 
X ~--~AHK[II(AHK)/Io(AHK)] K 
x sin(gH + 9K + ~0-H-K -- WHK) 

--0,  (34) 

in which, for strict validity, the terms with K -- H and 
K -- - 2 H  are to be deleted. Equation (34) leads directly 
to 

APPENDIX C 
The system of SAS tangent equations 

Fix H. From (4), 

~D a ~ O)HK --  ~t9 K - -  ~0 H_K,  (29) 

sin ~0H --~ sin(OgHK -- 9K -- ~0-H-K), (30) 

which has approximate validity for each fixed value of 
K. Averaging the right-hand side of (30) over K, 
naturally using weights AHK[II(AHK)/Io(AHK)], o n e  

obtains 

sin~oH~--{~AHK[II(AHK)/Io(AHK)]} - 1 K  

× ~ AHK[II(AHK)/Io(AHK)] K 
x sin(09HK - -  9 K  - -  9 - H - K ) -  (3 1) 

Similarly, 

sin ~0H ~ AHK[/1 (AHK)/I0(AHK)] 
K 

X COS(~ K -1- ~ - H - K  - -  (-OHK) 

--]- COS~H ~-~AHK[II(AHK)/Io(AHK)] 
K 

× sin(~0K + ( P - H - K  --  O-)HK) -'- 0 ,  (35) 

from which the SAS tangent formula (9) follows 
immediately. Equation (9) permits two possible values 
for 9n differing by zr, only one of which satisfies (10)- 
(12). Taking for ~o n the unique value determined by 
(10)-(12), one finds 

d2M(~onAo)/d~o2H = - - ( 1 / ~ A n K )  

X ~ AHK[II(AHK)/Io(AHK)] K 
× COS(~OH "3t- ~K "3t- ~ - H - K  --  O)HK) 

(36) 
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= - - ( 1 / K ~ A H K ) { C O S Q H  

× ~--~AHK[II(AItK)/Io(AHK)] 
K 

X COS(O)HK -- QK -- Q-H-K) 

+ sin 9H ~ AnK[II(ArlK)/Io(AHK)] 
K 

× sin(wnK -- QK -- Q-H-K)/ 
J 

= -  ( C / ~ K  AHK ) 

X (COS 2 ~ -~- sin 2 Qlt) 

= - ( C / K ~ A n K  ) 

(37) 

< o. (38) 

In short, M(Qn/Q) , as a function of the single phase QH, 
has a unique maximum in the whole interval (0, 2zr), 
which is reached by the value of QH defined by the 
tangent equations (9)-(12). 

APPENDIX E 
The global maximum of M(q0 

If the true values Qr of the phases Q are substituted into 
the SAS maximal function, the right-hand side of (8) 
becomes 

( 1 /  ~--~ AHK) ~--~ H,K 

x {cos(Qn + ~ + Q-H-K) COS O~K 

+ sin(grl + QK + Q-U-K) sin O~K }, (39) 

which becomes, if the double summations are restricted 
to those pairs (H, K) for which Arm and OMK have fixed 
specified values, 

X E COS(QH "[- QK + Q-H-K) 
H,K 

+ (sin°gHK/H~KAHK) 

x ~ AUK sin(q~ + QK + Q-H-K)~- (40) 
H,K ) 

In view of (5) and (6), this reduces simply to 

[I~(ArtK)/I~(AnK)](COS 20~IK + sin 20~IK) 

= I~(AnK)/I~(AmO, (41) 

which is seen to be independent of OMx. Dropping 
the restriction on the double summation, one obtains 
(19). 
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